Tutorials References Exercises Videos Menu
Free Website Get Certified Pro

Python Tutorial

Python HOME Python Intro Python Get Started Python Syntax Python Comments Python Variables Python Data Types Python Numbers Python Casting Python Strings Python Booleans Python Operators Python Lists Python Tuples Python Sets Python Dictionaries Python If...Else Python While Loops Python For Loops Python Functions Python Lambda Python Arrays Python Classes/Objects Python Inheritance Python Iterators Python Scope Python Modules Python Dates Python Math Python JSON Python RegEx Python PIP Python Try...Except Python User Input Python String Formatting

File Handling

Python File Handling Python Read Files Python Write/Create Files Python Delete Files

Python Modules

NumPy Tutorial Pandas Tutorial SciPy Tutorial Django Tutorial

Python Matplotlib

Matplotlib Intro Matplotlib Get Started Matplotlib Pyplot Matplotlib Plotting Matplotlib Markers Matplotlib Line Matplotlib Labels Matplotlib Grid Matplotlib Subplot Matplotlib Scatter Matplotlib Bars Matplotlib Histograms Matplotlib Pie Charts

Machine Learning

Getting Started Mean Median Mode Standard Deviation Percentile Data Distribution Normal Data Distribution Scatter Plot Linear Regression Polynomial Regression Multiple Regression Scale Train/Test Decision Tree Confusion Matrix Hierarchical Clustering Logistic Regression Grid Search Categorical Data K-means Bootstrap Aggregation Cross Validation AUC - ROC Curve K-nearest neighbors

Python MySQL

MySQL Get Started MySQL Create Database MySQL Create Table MySQL Insert MySQL Select MySQL Where MySQL Order By MySQL Delete MySQL Drop Table MySQL Update MySQL Limit MySQL Join

Python MongoDB

MongoDB Get Started MongoDB Create Database MongoDB Create Collection MongoDB Insert MongoDB Find MongoDB Query MongoDB Sort MongoDB Delete MongoDB Drop Collection MongoDB Update MongoDB Limit

Python Reference

Python Overview Python Built-in Functions Python String Methods Python List Methods Python Dictionary Methods Python Tuple Methods Python Set Methods Python File Methods Python Keywords Python Exceptions Python Glossary

Module Reference

Random Module Requests Module Statistics Module Math Module cMath Module

Python How To

Remove List Duplicates Reverse a String Add Two Numbers

Python Examples

Python Examples Python Compiler Python Exercises Python Quiz Python Certificate

Python math.hypot() Method

❮ Math Methods


Example

Find the hypotenuse of a right-angled triangle where perpendicular and base are known:

#Import math Library
import math

#set perpendicular and base
parendicular = 10
base = 5

#print the hypotenuse of a right-angled triangle
print(math.hypot(parendicular, base))
Try it Yourself »

Definition and Usage

The math.hypot() method returns the Euclidean norm. The Euclidian norm is the distance from the origin to the coordinates given.

Prior Python 3.8, this method was used only to find the hypotenuse of a right-angled triangle: sqrt(x*x + y*y).

From Python 3.8, this method is used to calculate the Euclidean norm as well. For n-dimensional cases, the coordinates passed are assumed to be like (x1, x2, x3, ..., xn). So Euclidean length from the origin is calculated by sqrt(x1*x1 + x2*x2 +x3*x3 .... xn*xn).


Syntax

math.hypot(x1, x2, x3, ..., xn)

Parameter Values

Parameter Description
x1, x2, x3, ..., xn Required. Two or more points representing coordinates

Technical Details

Return Value: A float value, representing the Euclidean distance from the origin for n inputs, or hypotenuse of a right-angled triangle for two inputs
Change Log: From 3.8: Also supports n-dimensional points. Earlier versions only support two-dimensional points

More Examples

Example

Find the Euclidean norm for the given points:

#Import math Library
import math

#print the Euclidean norm for the given points
print(math.hypot(10, 2, 4, 13))
print(math.hypot(4, 7, 8))
print(math.hypot(12, 14))

❮ Math Methods